
 

 

 

Abstract—Recently, models describing the behavior of SIR 

epidemic with nonlinear incident rate have been revisited. We study 

the behavior of the model with time delay in which the total 

population size varies. Lyapunov functions are constructed to 

establish the global asymptotic stability of all steady states of the 

model. Numerical simulations are shown to confirm the main results. 

 

Keywords—Epidemic model, Nonlinear incidence rate, Delay, 

Stability, SIR. 

I. INTRODUCTION 

ECENTLY, many research works on mathematical 

models in biology have focused on existence and 

asymptotic stability of nonnegative equilibrium points through 

bifurcation analysis of the model [1]-[14]. To make the model 

more realistic, many assumptions on the model have been 

imposed. For example, in an SIR model, new population 

entering the system is not only due to the new born but 

communicable diseases may be introduced into a population 

by the arrival of infectives from outside the population, as 

seen in [2]-[5]. Incidence rate also plays an important role in 

the dynamical modeling of infections diseases. It has been 

suggested by several authors ([6]-[11]) that the disease 

transmission process may have a nonlinear incidence rate. In 

many epidemic models [6]-[8], the bilinear incidence rate 

SI , where S is the number of susceptible individuals, and I 

is the number, of infective members and the standard 

incidence rate SI N , where N is the total population size, 

are frequently used. The bilinear incidence rate is based on the 

law of mass action. This contact law is suitable for 

communicable diseases such as influenza and so on, but not 

for sexually transmitted diseases. It has been pointed out that 
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the standard incidence rate may give a good approximation if 

the number of available partners is large enough but not if 

everybody could not make more contacts than it's practically 

feasible. 

After studying the cholera epidemic spread in 1973, 

Capasso and Serio [9] introduced a saturated incidence rate 

SIg )(  into epidemic models, where ( )g I  tends to a 

saturation level when I gets large, that is ( ) (1 )g I I I   , 

where I  measures the infection force of the disease and 

1 (1 )I  measures the inhibition effect from the behavioral 

change of the susceptible individuals when their number 

increases or from the crowding effect of the infective 

individuals. This incidence rate seems more reasonable than 

the bilinear incidence rate SI , because it includes the 

behavioral change and crowding effect of the infective 

individuals and prevents the unboundedness of the contact rate 

by choosing suitable parameters. 

 

We formulate the model based on the assumptions that the 

total population size does not change, no new population 

entered the system, none of the population dies and the 

recovered population has permanent immunity and cannot be 

infected again. To make it more realistic we add a time delay 

in the infectious rate, which is an important key factor in the 

model that also involves immigration. Then, our model has the 

following form: 

( ) ( ) ( )
(1 ) ( ),

1 ( )

( ) ( ) ( )
( ) ( ),

1 ( )

( )
( ) ( ),

dS t S t I t
p C S t

dt I t

dI t S t I t
pC I t

dt I t

dR t
I t R t

dt

 


 

 
  

 

 


   

 


    

 

 

 (1) 

where ( )S t  is the number of individuals susceptible to the 

disease at time t, ( )I t  is the number of infective members at 

time t, ( )R t  is the number of members who have been 

removed from the possibility of infection through full 

immunity at time t, )( tI  is the number of members who 

have been removed from the possibility of infection through 

full immunity at time t  , ( )N t  is the total population size 

at time t, where ( ) ( ) ( ) ( )N t S t I t R t   , p  is the fraction of 

infectives, 0 1p  , C is a constant flow of new members 

into the whole population per unit time which can be 

susceptible or infective,   is the average number of contacts 
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per infective member per day,   is the time delay during 

which the infectious agents, or germs, use as incubation time 

before a human who has been infected can spread the infection 

to a susceptible human, 1 (1 ( ))I t    measures the 

inhibition effect from the behavioral change of the susceptible 

individuals when their number increases or from the crowding 

effect of the infective individuals,   is the natural death rate 

of the population,   is the recovery rate of infective 

individuals,   is the death rate due to the disease, and all 

parameters are positive. 

The paper is arranged as follows. In Section II, the basic 

results are given. In Section III, the stability is analyzed by 

making use of parts of Kuang’s work [12]. In Section IV, 

numerical results are illustrated by computer simulations. The 

conclusion is provided in the final section. 

II. BASIC RESULTS 

We rewrite the system (1) into the form 

   


  


 

SIdS( t )
(1 p )C S ,

dt 1 I

SIdI( t )
pC I ,

dt 1 I

dR( t )
I R,

dt



















 

 (2) 

where ( ), ( ), ( ), ( )S S t I I t I I t R R t       and 

      . The initial conditions of (2) are given as 

1 2 3( ) ( ), ( ) ( ), ( ) ( ),

( ) 0, [ ,0], (0) 0, 1, 2,3,i i

S I R

i

     

  

  

      
 (3) 

where 1 2( ), ( )    and 3 ( )  are continuous on [ , 0] . 

First, we consider the steady states of the system (2). These 

steady states * * *( , , )S I R  are determined analytically by 

setting 0S I R     . Then, we obtain 
*

*

*

* *

* *

(1 ) ( ( ))
,

( )( )

( ) ,

( )

p C C N
S

C N

I C N

R C N

  

   

 

  

  


  

 

 

 

where * * * *N S I R   . Letting 
* *

*

*

( )( )
( ) ,

( ( ))

N C N
F N

C N

    


   

  
 

 
 

we then have 

* *1
0 ( )( ).pC F N C N


    (4) 

If the system (2) has a solution where
 

* (0, ]N C  , then the 

system (2) has a physically feasible equilibrium solution. 

By substitution, the following can be easily shown. 

 

Proposition 1. If 0p  , then the system (2) has a unique 

disease-free equilibrium point, namely
 0 ( , 0, 0)E C  . 

 

Proposition 2. If 0

C
R




 , and 

(i) 0p   and 0 1R  , or 

(ii) 0 1p   and 
* (0, )N C  , or 

(iii) 1p   

Then the system (2) has an endemic equilibrium point. 

Proof: 

(i) From system (2), if 0p  , the steady state 1 1 1 1( , , )E S I R  

is determined analytically by setting 0S I R      and 

0 1.R   Then we obtain 

  

   

   

1

1

1

S ( C ) ( ),

I ( C ) [ ( )] 0 ,

R [ ( C )] [ ( )] 0 .

   

    

     

 

(ii) Consider the system (2) when 0 1p   and 

* (0, ).N C   Multiplying both sides of (4) by
 

*( ),C N   we obtain *

*
( ) 0

( )

pC
F N

C N




 


. Let 

 


* *

*

pC
H( N ) F( N )

( C N )




, 

Then, 

 


* *

* * * 2

dH( N ) dF( N ) pC

dN dN (C N )




. 

Since all parameters are positive, 
* (0, )N C   and 

*

*

( )
0

dF N

dN
 , then 

*

*

( )
0

dH N

dN
 . This means *( )H N  is an 

increasing function of *N . Now, consider the limit of *( )H N  

as * 0N  . We obtain 
* *

* *

0 0
lim ( ) lim ( )

N N
H N F N p

  
  . 

Since 
*

*

0
lim ( )

N
F N


  , we have 

*

*

0
lim ( ) 0

N
H N


 . As 

*N C  , we obtain 

* *

*

*
lim ( ) ( ) lim

( )C C
N N

C pC
H N F

C N
 



  

 

 


. 

Since 
*

*
lim

( )C
N

pC

C N








 


 we have

 
*

*lim ( ) 0
C

N

H N







 . 

Thus, *( )H N  has a unique positive root 
* (0, )N C   which 

means that the endemic equilibrium point will exist and is 

unique. 

Let 2 2 2 2( , , )E S I R  be the endemic equilibrium point of 

the system (2) where 0 1p   and 

2 2 2 2 (0, )N S I R C     , so that 

2
2

2

2 2

2 2

(1 ) ( ( ))
,

( )( )
( ) ,

( )] .

p C C N
S

C N
I C N
R C N

  

   
 

  

  


  
 
 

 

(iii) From the system (2), if 1p   we have the steady state 

3 3 3 3( , , )E S I R  where 3 30,S I C    and
 3R C  .  
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III. STABILITY ANALYSIS 

A.  Local Stability 

In what follows, we analyze the model system in terms of 

its stability relying in parts on the work of Kuang’s [12]. 

Theorem 3. Let 0

C
R




 . If 0p   and 

(i) 0 1R  , then the disease-free equilibrium point 0E  is 

locally asymptotically stable for any time delay 0  . 

(ii) 0 1R  , then the disease-free equilibrium point 0E  is 

unstable for any time delay 0  . 

(iii) 0 1R  , the disease-free equilibrium point 0E  is stable. 

Here, 0R  is the average number of secondary infections 

generated by one primary infection in a susceptible 

population. 

 

Proof: To discuss the local asymptotic stability of the 

disease-free equilibrium point 0 ( , 0, 0)E C  , let us 

consider the following coordinate transformation 
* * *( ) ( ) , ( ) ( ) , ( ) ( )x t S t S y t I t I z t R t R      , 

where * * *( , , )S I R  denotes any equilibrium of the system (2). 

Hence, we have the corresponding linearized system of (2) of 

the form 

     

* *

* * 2

* *

* * 2

( ) ( ) ( ) ( ),
1 (1 )

( ) ( ) ( ) ( ),
1 (1 )

( ) ( ) ( ),

I S
x t x t y t

I I

I S
y t x t y t y t

I I
z t y t z t

 
 

 

 
 

 
 

 
  

 

   
 

 







 (5) 

 

The associated transcendental characteristic equation of (5) at 

the disease-free equilibrium point 
* * *

0 ( , , ) ( ,0,0)E S I R C    becomes 

2( )[ ( ) ( ) ] 0
C

C e 
        



         (6) 

It is clear that (6) has a characteristic root 1   , which is 

always negative since 0  . Now, we consider the 

transcendental polynomial equation 

2 ( ) ( ) 0
C

C e 
      



        (7) 

(i) We will show that if 0 1R   then 0E  is locally 

asymptotically stable. Consider the case 0   in (7). We have 

2 ( ) 0
C

C


     


       

Since 0 1R  , from the Routh-Hurwitz criterion, all roots of 

(7) have negative real parts for 0  . 

If (7) has pure imaginary roots i    for some 0   and

0  , then by substituting i   into (7), we then have 

2 sin cos
C

C
 

    


     (8) 

and 

 ( ) cos sin
C

C
 

     


    (9) 

Squaring both sides of (8) and (9) and adding, we get 
2 2

4 2 2 2 2 2 2 2

2
( ) 0

C
C


      


       

Since 0 1R  , then we have 

2 2
2 2

2
0

C
 


    and 

2 2 2 2 0C    . From the Routh-Hurwitz criterion, we 

obtain 2 0  . This contradiction means that any solution of 

(7) must have negative real part. Hence, the disease-free 

equilibrium point 0E  is locally asymptotically stable for any 

time delay 0  . 

(ii) Next, we will show that if 0 1R  , then 0E  is unstable. 

Let 

2( ) ( ) ( )
C

G C e 
       



       . 

Note that, since 0 1R  , we have that (0) 0G C     and 
( )G    as   . It follows from continuity of the 

function ( )G   on ( , )   that the equation ( ) 0G    has at 

least one positive solution. Hence, the characteristic (7) has at 

least one positive real solution. Hence, 0E  is unstable. This 

proves the conclusion of (ii). 

(iii) Next, we will show that if 0 1R  , and then 0E  is stable. 

If 0 1R  , the transcendental polynomial (7) becomes 

2( ) ( ) ( ) 0
C C

G C e C 
       

 

          (10) 

It is clear that 0   is a simple root of ( )G  . We further 

show that other solutions of (10) must have negative real parts. 

In fact, if (10) has an imaginary solution, u i    for some 

0, 0u    and 0  , then by substituting u i    into 

(10), we have 

2 2 ( ) [( ) cos sin ]uC C
u u C e u 

      
 

       (11) 

and 

2 ( ) [( )sin cos ]uC C
u e u 
      

 

      . (12) 

Squaring both sides of (11) and (12) then adding we get 

 

2 2 2 2

2 2
2 2

2

[ ( ) ] [2 ( ) ]

[( ) ].                                (13)

C C
u u C u

C
u

 
     

 


 


      

  

 

Simplifying the above inequality, we then have 

2 2 2 2( )[( ) 2 ] 2 (2 ) 0
C

u u u u C u


    


        

Since , , ,u  , and C  are all positive, the above inequality 

is not true. Hence, the solutions of (10) have negative real 

parts except for the solution 0  . Hence, 0
E  is stable for 

any time delay 0  . This proves the conclusion of (iii).   

 

Theorem 4. If 0p   and 0
1R  , then the endemic 

equilibrium point 1
E  is locally asymptotically stable for any 

time delay 0  . 
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Proof: The associated transcendental characteristic 

equation of system (5) at 
* * *

1 1 1 1
( , , ) ( , , )S I R E S I R   

becomes 
2

1 1 1
( )[ ( ) ( ) ] 0A A B e                ,  (14) 

where
 1 1 1

(1 )A I I     , 
2

1 1 1
(1 )B S I   . It is clear 

that 1
    is always negative. Now, we consider 

2

1 1 1
( ) ( ) 0A A B e             . (15) 

For 0  , we have that
 

2

1 1 1 1
( ) 0.A B A B         

 
Substituting

 
1

( ) ( )S C     
 

1
( ) [ ( )]I C      

 
we then have 

1 1 1 1
( ) (1 ) 0A B I I            

and 

1 1 1 1
( ) (1 ) 0.A B I I         

 
It follows that any solution of (15) has negative real part for 

0  . If (15) has pure imaginary solution i    for some 

0   and 0  , then we have 
2

1 1 1
cos sinA B B         , (16) 

and 

   1 1 1
cos sinA B B        . (17) 

Squaring both sides of equations (16) and (17) and adding, we 

get 
4 2 2 2 2 2 2 2 2

1 1 1 1
( ) 0A B A B          . 

Letting 2z  , we then have 
2 2 2 2 2 2 2 2

1 1 1 1
( ) 0z A B z A B        . (18) 

Consider 
2

2 2 2 21 1 1
1 1 4

1 1
2

1 1

(1 )
( ) [( )*
1 (1 )

( (1 ) )]

I I S
A B

I I

I S

   
 

 

  

 
    

 

 

 

and 

𝜂 1 + 𝜔𝐼1 
2 − 𝛽𝑆1

=
1

𝜎𝜔 + 𝛽
 
𝜂𝛽𝜔 𝛽𝐶 − 𝜎𝜂 + 𝛽𝜔2𝐶 𝛽𝐶 − 𝜎𝜂 

𝜂 𝜎𝜔 + 𝛽 
 . 

It is readily seen that if 0
1R  , then

 
2

1 1
(1 ) 0I S     . 

So, 
2 2 2

1 1
0A B     and 

2 2 2 2 1 1

1 1 2

1 1

1

1

[ ( ( ) )
1 (1 )

( )] 0.
1

I S
A B

I I

I

I

 
    

 

 


   
 

 


 

It follows that any solution of (18) has negative real part, 

which contradicts the fact that 2z  . This shows that all 

solutions of the characteristic (15) have negative real parts for 

any time delay 0  .                 

By using the similar technique, the following theorem can 

be shown. 

 

 

Theorem 5. If 0 1p   and 2
(0, )N C  , 

2 2 2
(1 ) 0I S I  

 
and 

2 2 2
(1 ) 0I S I    

 
then the endemic equilibrium point 2

E  is locally 

asymptotically stable for any time delay 0  .
 

 

Proof: The characteristic equation of (5) at 
* * *

2 2 2 2
( , , ) ( , , )S I R E S I R   becomes 

2

2 2 2
( )[ ( ) ( ) ] 0A A B e                , (19) 

where
 2 2 2

(1 )A I I      and 
2

2 2 2
(1 )B S I   . 

Now, we consider 
2

2 2 2
( ) ( ) 0A A B e              (20) 

For 0  , we have 
2

2 2 2 2
( ) 0A B A B          . 

Observe that 

2

2

2

2 2

2

( )
1

0
1

S
I

I
A B

I


   






     


 

and

 
2

2

2

2 2

2

( )
1

0
1

S
I

I
A B

I





   






   


. 

It follows that any solutions of (20) have negative real parts 

for 0  . If (20) has a purely imaginary solution i    for 

some 0   and 0  , then we have 
2

2 2 2
cos sinA B B          (21) 

and 

   2 2 2
( ) cos sinA B B        . (22) 

Squaring both sides of (21) and (22), then adding, we have 
4 2 2 2 2 2 2 2 2

2 2 2 21
( ) 0A B A B          . 

Letting 2z  , we then have 
2 2 2 2 2 2 2 2

2 2 2 2
( ) 0z A B z A B         (23) 

We observe that 

2 2 2 2 2
2 2 2

2 2

2
2

2 2

[( ( ) )*
1 1

( ( ) )] 0
1 1

S
A B I

I I
S

I
I I


  

 



 

     
 

  
 

 

and 

2 2 2 2 2 2
2 2 2

2 2

2 2
2

2 2

[ ( ) ]*
1 (1 )

[ ( ) ] 0
1 1

I S
A B

I I
I S

I
I I

 
   

 
 

 
 

   
 

  
 

 

Therefore, all solutions of (23) have negative real parts, which 

contradicts the fact that 2z   This shows that all solutions of 

(20) have negative real parts for 0  .          

 

Theorem 6. If 1p  , then the endemic equilibrium point 

3
E  is locally asymptotically stable. 
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Proof: If 1p  , the characteristic equation at

3 3 3
(0, , )E I R  becomes 

 𝜆 + 𝜎  𝜆2 +  𝜂 + 𝜎 +
𝛽𝐼3

1 + 𝜔𝐼3
 𝜆 + 𝜂  

𝛽𝐼3
1 + 𝜔𝐼3

+ 𝜎  

= 0.                                                              24   
It is easy to see that any solutions of (24) have negative real 

parts.                        

B.  Global Stability 

We now consider the following equation with time delay 

  , ( ) ( ) 0, [ ,0), (0) 0,
1

au
u cu u

u





   


        


  (25) 

where ( ), ( )u u t u u t    . The parameters ,a c  and   are 

positive constants and 0  . Note that (25) always has a 

trivial equilibrium 0u  . Moreover, if a c , then (25) has 

also a unique positive equilibrium
 

*u a c c  . For (25), we 

have the following result. 

 

Lemma 7. If a c , then the positive equilibrium 
*u a c c   of (25) is globally asymptotically stable; if 

,a c  then the trivial equilibrium (0,0)  of (25) is globally 

asymptotically stable. 

 

Proof:  See [9].                  

 

Proposition 8. Any solution ( ( ), ( ), ( ))S t I t R t  of system (2) 

satisfies
  
lim sup( ( ) ( ) ( ))
t

C
S t I t R t


   . 

 

Proof:  Since ( ) ( ) ( ) ( )N t S t I t R t     , we have 

                                     lim sup ( )
t

C
N t


  

  
       

 

Proposition 9. Any solution ( ( ), ( ), ( ))S t I t R t  of (2) with 

initial conditions in (3) is defined on [0, )  and remains 

positive for all 0t  . 

 

Proof: Define

1 2 3 1 2 3{ ( , . ) | 0, 0, 0}
c

K C      


       . From 

Proposition 8, we see that K attracts all solutions of (2). For 

any
 1 2 3( , . ) K     , let ( ( ), ( ), ( ))S t I t R t  be the solution of 

(2) with the initial function  . We claim that for any 0t  ,

( )S t C  . In fact, if there is a 1 0t   such that 1( )S t C   

and 
1( ) 0S t  , then we have that 

1 1

1 1

1

( ) ( )
( ) (1 ) ( )

1 ( )

S t I t
S t p C S t

I t

 


 


   

 
  

1 1

1

( ) ( )
0.

1 ( )

S t I t

I t

 

 


  

 
 

Here, we have used 1( )S t C  . This is a contradiction to 

1( ) 0S t  . The claim is proved. Hence, K  is positively 

invariant with respect to the system (2).          

 

Theorem 10. If 0p   and 0 1R   then the disease-free 

equilibrium point 0E  is globally asymptotically stable. 

 

Proof: Let ( ( ), ( ), ( ))S t I t R t  be any positive solution of (2). 

When 0p  , ( ( ), ( ), ( ))S t I t R t  is the solution of system (2) 

with the initial conditions (3). By Proposition 8, we have

 limsup ( )
t

S t C 


 . If 0 1R   then
 

C   . We may 

choose 0   sufficiently small satisfying 

( )
C

  

  . (26) 

Hence, for 0   sufficiently small satisfying (26), there is a 

1 0T   such that if 1t T , then ( )S t C    . When 0p  , 

we derive from the second equation of (2), for 1t T   , that 

( )

( ) ( )
1

C
I

I t I t
I





 
 




 


  

Consider the following auxiliary equation
 

( ) [ ( ) (1 )] ( ).u t C u u u t          

From inequality (26), ( )C      and by Lemma 7, it 

follows that 

lim ( ) 0
t

u t


  

By comparison we find that limsup ( ) 0
t

I t


 . Hence there is a, 

2T ,  12 TT , such that if 2t T  then ( )I t  . We find, 

from the third equation of (2), that, for 2t T , 

( ) ( ) ( ) ( )R t I t R t R t        

By comparison it follows that 

lim sup ( ) 0
t

R t


  

When 0p  , we find, from the first equation of (2), for 

2t T   , that 

( )
( ) ( )

1

S t
S t C S t

 



  


 . 

By comparison, it follows that 

(1 )
lim inf ( )

( )t

C
S t



   




 
. 

Letting 0  , we obtain 

lim inf ( )
t

S t C 


 . 

Therefore, 

lim ( )
t

S t C 


 . 

If 0p   and 0 1R  , then 0E  is locally asymptotically stable. 

We conclude that 0E  is globally asymptotically stable.    
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Permanence (or persistence) is an important property of 

dynamical systems and other systems in epidemiology, 

biology, ecology, and so on. A more basic and important 

question to ask is whether or not those involved populations 

will be alive and well in the long run. 

 

Proposition 11. Suppose that 0p   and 0 1R  , then for any 

solution ( ( ), ( ), ( ))S t I t R t  of system (2) with initial conditions 

(3), we have that 

lim
t→+∞

inf S t ≥
C σ + Cω 

C ωσ + β + σ2
≔ d1 , 

lim
t→+∞

inf I t ≥
βC − ση

η ωσ + β 
e−ητ ≔ d2, 

lim
t→+∞

inf R t ≥
γd2

σ
≔ d3.                   

Proof: Let ( ( ), ( ), ( ))S t I t R t  be any solution of (2). When 

0p  , ( ( ), ( ), ( ))S t I t R t  is the solution of (2) with the initial 

conditions (3). By Proposition 8, it follows that 

lim𝑡→+∞ sup 𝐼 𝑡 ≤
𝐶

𝜎
. Hence, for 𝜀 > 0 sufficiently small, 

there is a 𝑇1 > 0 such that if 𝑡 > 𝑇1, I t < 𝐶/𝜎 + 𝜀. When 

0p  , we therefore find, from the first equation of (2), for 

𝑡 > 𝑇1 + 𝜏, that 

𝑆  𝑡 ≥ 𝐶 −  𝜎 +
𝛽  
𝐶
𝜎

+ 𝜀 

1 +𝜔  
𝐶
𝜎

+ 𝜀 
 𝑆 𝑡 . 

Thus, 

lim
𝑡→+∞

inf 𝑆 𝑡 ≥
𝐶 𝜎 + 𝐶𝜔 

𝐶 𝜔𝜎 + 𝛽 + 𝜎2
≔ 𝑑1. 

 

We now show that 

lim
𝑡→+∞

inf  𝐼 𝑡 ≥ 𝑑2. 

For 𝑡 ≥ 0, define a differentiable function 

          𝑉1 𝑡 = 𝐼 𝑡 + 𝛽𝑆1  
𝐼 𝑢 

1 + 𝜔𝐼 𝑢 
𝑑𝑢.                         27 

𝑡

𝑡−𝜏

 

Calculating the derivative of 𝑉1 𝑡  along the solutions of (2) 

when 0p  , we obtain 

𝑉1
  𝑡 =

𝛽𝐼𝜏
1 + 𝜔𝐼𝜏

 𝑆 𝑡 − 𝑆1 

+  
𝛽𝑆1

1 + 𝜔𝐼 𝑡 
− 𝜂 𝐼 𝑡 .                           28  

For any 0 < 𝑞 < 1, we have that 

𝑞𝐼1 < 𝐼1 =
𝛽𝐶 − 𝜎𝜂

𝜂 𝜔𝜎 + 𝛽 
 

𝑆1 <
𝐶

𝑞𝐼1𝛽
1 + 𝑞𝐼1𝜔

+ 𝜎
.     

Let  𝑞𝐼1𝛽/ 1 + 𝑞𝐼1𝜔  + 𝜎 ≔ 𝑘1 . There is a constant 𝜌 ≥ 1 

sufficiently large such that 𝑆1 <  𝐶/𝑘1  1 − 𝑒
−𝑘1𝜌𝜏  ≔ 𝑆1

∆. 
We now claim that it is impossible that 𝐼 𝑡 ≤ 𝑞𝐼1 for all 

𝑡 ≥ 𝜌𝜏. Otherwise, if 𝐼 𝑡 ≤ 𝑞𝐼1 for all 𝑡 ≥ 𝜌𝜏, when 0p  , 

we have, from the first equation of (2), that, for 𝑡 ≥ 𝜌𝜏 + 𝜏, 

       𝑆  𝑡 ≥ 𝐶 −  𝜎 +
𝛽𝑞𝐼1

1 + 𝜔𝑞𝐼1
 𝑆 𝑡 .                                29  

It then follows that, for 𝑡 > 𝜌𝜏 + 𝜏,   
𝑑𝑆 𝑡 

𝑑𝑡
+  𝜎 + 𝛽𝑞𝐼1/ 1 +𝜔𝑞𝐼1  𝑆 𝑡 ≥ 𝐶. 

We have 

𝑆 𝑡 > 𝐶 1 − 𝑒−𝑘1 𝑡−𝜌𝜏−𝜏  /𝑘1. 

Hence, for 𝑡 > 2𝜌𝜏 + 𝜏, 

        𝑆 𝑡 >
𝐶

𝑘1

 1 − 𝑒−𝑘1𝜌𝜏  = 𝑆1
∆ > 𝑆1.                           30  

Noting that 𝐼 𝑡 ≤ 𝑞𝐼1 < 𝐼1 , it follows from (28) and (30) that, 

for 𝑡 > 2𝜌𝜏 + 𝜏, 

𝑉1
  𝑡 ≥

𝛽𝐼𝜏
1 + 𝜔𝐼𝜏

 𝑆 𝑡 − 𝑆1 +  
𝛽𝑆1

1 + 𝜔𝐼1
− 𝜂 𝐼 𝑡 . 

Consider 

𝛽𝑆1

1 + 𝜔𝐼1
− 𝜂 =

𝛽  
𝜂 +𝜔𝐶
𝜎𝜔 + 𝛽

 

1 +
𝜔
𝜂
 
𝛽𝐶 − 𝜎𝜂
𝜎𝜔 + 𝛽

 
− 𝜂 

=
𝜂 𝜂𝛽 + 𝜔𝛽𝐶 

𝜂𝛽 + 𝜔𝛽𝐶
− 𝜂 = 0, 

We then have 

                 𝑉1
  𝑡 >

𝛽𝐼𝜏
1 +𝜔𝐼𝜏

 𝑆1
∆ − 𝑆1 .                            31  

Setting 

𝑗 = min
𝜃∈ −𝜏,0 

𝐼 𝜃 + 2𝜌𝜏 + 2𝜏 , 

we claim that 𝐼 𝑡 ≥ 𝑗 for all 𝑡 > 2𝜌𝜏 + 𝜏. Otherwise, if there 

is a 𝑇 ≥ 0 such that 𝐼 𝑡 ≥ 𝑗 for 2𝜌𝜏 + 𝜏 ≤ 𝑡 ≤ 2𝜌𝜏 + 2𝜏 +

𝑇, 𝐼 2𝜌𝜏 + 2𝜏 + 𝑇 = 𝑗 and 𝐼  2𝜌𝜏 + 2𝜏 + 𝑇 ≤ 0, it follows 

from inequality (30) and the second equation of (2) when 

0p   that, for 𝑡1 = 2𝜌𝜏 + 2𝜏 + 𝑇,  

𝐼  𝑡1 =
𝛽𝑆 𝑡1 𝐼 𝑡1 − 𝜏 

1 +𝜔𝐼 𝑡1 − 𝜏 
− 𝜂𝐼 𝑡1  

or 

𝐼  𝑡1 >  
𝛽𝑆1

∆

1 + 𝜔𝐼1
− 𝜂 𝑗 > 0. 

This is a contradiction. Hence, 𝐼 𝑡 ≥ 𝑗 for all 𝑡 ≥ 2𝜌𝜏 + 𝜏. 

Accordingly, for 𝑡 ≥ 2𝜌𝜏 + 2𝜏, it follows from inequality (31) 

that 

𝑉1
  𝑡 >

𝛽𝑗

1 + 𝜔𝑗
 𝑆1

∆ − 𝑆1 ,       

which yields 𝑉1 𝑡 → +∞ as 𝑡 → +∞. It follows from (27) that 

there is a 𝑇2 > 0 such that if 𝑡 > 𝑇2 , 

𝑉1 𝑡 ≤
𝐶

𝜎
+
𝐶𝛽𝑆1𝜏

𝜎 + 𝐶𝜔
. 

A contradiction occurs. Hence, the claim is proved, that is, it is 

impossible that  𝐼 𝑡 ≤ 𝑞𝐼1 for all 𝑡 ≥ 𝜌𝜏. 
By the claim, we are left to consider two possibilities. First, 

𝐼 𝑡 ≥ 𝑞𝐼1 for all 𝑡 sufficiently large. Second, 𝐼 𝑡  oscillates 

about 𝑞𝐼1for all 𝑡 sufficiently large. We now show that 

𝐼 𝑡 ≥ 𝑞𝑑2 for all 𝑡 sufficiently large. The conclusion is 

obvious for the first case. For the second case, let 𝑡1 < 𝑡2 be 

sufficiently large such that 

𝐼 𝑡1 = 𝐼 𝑡2 = 𝑞𝐼1 ,   𝐼 𝑡 < 𝑞𝐼1 , 𝑡1 < 𝑡 < 𝑡2. 
If 𝑡2 − 𝑡1 ≤ 𝜏, when 0p  , it follows from the second 

equation of (2) that 𝐼  𝑡 > −𝜂𝐼 𝑡 , which yields, for 𝑡1 < 𝑡 <
𝑡2, 
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              𝐼 𝑡 > 𝐼 𝑡1 𝑒
−𝜂 𝑡−𝑡1  

> 𝑞𝐼1𝑒
−𝜂𝜏 = 𝑞  

𝛽𝐶 − 𝜎𝜂

𝜂 𝜎𝜔 + 𝛽 
 𝑒−𝜂𝜏 = 𝑞𝑑2. 

 

If 𝑡2 − 𝑡1 > 𝜏, we obtain 𝐼 𝑡 ≥ 𝑞𝑑2 for 𝑡 ∈  𝑡1, 𝑡1 + 𝜏 . 
We now claim that 𝐼 𝑡 ≥ 𝑞𝑑2 for all 𝑡 ∈  𝑡1 + 𝜏, 𝑡2,  . 

Otherwise, there is a 𝑇1
∗ > 0 such that 𝐼 𝑡 ≥ 𝑞𝑑2 for 𝑡1 ≤

𝑡 ≤ 𝑡1 + 𝜏 + 𝑇1
∗,   𝐼 𝑡1 + 𝜏 + 𝑇1

∗ = 𝑞𝑑2 and 𝐼  𝑡1 + 𝜏 + 𝑇1
∗ ≤

0. On the other hand, when 𝑝 = 0, it follows from the second 

equation of (2), for 𝑡0 = 𝑡1 + 𝜏 + 𝑇1
∗, that 

𝐼  𝑡0 =
𝛽𝑆 𝑡1 + 𝜏 + 𝑇1

∗ 𝐼 𝑡1 + 𝑇1
∗ 

1 +𝜔𝐼 𝑡1 + 𝑇1
∗ 

− 𝜂𝐼 𝑡1 + 𝜏 + 𝑇1
∗  

≥ 𝑞𝑑2  
𝛽𝑆1

∆

1 + 𝜔𝐼1
− 𝜂 > 0, 

a contradiction. Hence, 𝐼 𝑡 ≥ 𝑞𝑑2 for 𝑡 ∈  𝑡1, 𝑡2 . Since the 

interval  𝑡1, 𝑡2  is chosen arbitrarily, we conclude that 

𝐼 𝑡 ≥ 𝑞𝑑2 for all 𝑡 sufficiently large for the second case. 

Since 0 < 𝑞 < 1 is chosen arbitrarily, we have that 

lim
𝑡→+∞

inf 𝐼 𝑡 ≥ 𝑑2. 

We now show that lim𝑡→+∞ inf𝑅 𝑡 ≥ 𝑑3 . Since 𝐼 𝑡 ≥ 𝑑2, 
we have 𝐼 𝑡 ≥ 𝑑2 − 𝜀 for large 𝑡 and for any sufficiently 

small 𝜀 > 0. Thus the third equation of (2) gives 
𝑑𝑅 𝑡 

𝑑𝑡
≥ 𝛾 𝑑2 − 𝜀 − 𝜎𝑅 𝑡  

for large 𝑡, which implies that 

                       lim𝑡→+∞ inf𝑅 𝑡 ≥ 𝛾𝑑2/𝜎.         

By using the similarly techniques, the following propositions 

can be shown. 

 

Proposition 12. If 0 < 𝑝 < 1 and 𝑁2 ∈  0,𝐶/𝜎 , then for 

any solution ( ( ), ( ), ( ))S t I t R t  of system (2) with initial 

conditions (3), we have that 

lim
𝑡→+∞

inf 𝑆 𝑡 ≥
 1 − 𝑝 𝐶 𝜎 + 𝐶𝜔 

𝐶 𝜎𝜔 + 𝛽 + 𝜎2
≔ 𝑒1 , 

lim
𝑡→+∞

inf 𝐼 𝑡 ≥
1

𝛼
 𝐶 − 𝜎𝑁2 𝑒

−𝜂𝜏 ≔ 𝑒2,   

lim
𝑡→+∞

inf𝑅 𝑡 ≥
𝛾𝑒2

𝜎
≔ 𝑒3.                          

 

Proposition 13. Suppose that 1p  , then for any solution 

( ( ), ( ), ( ))S t I t R t  of system (2) with initial conditions (3), we 

have that 

lim
𝑡→+∞

inf 𝑆 𝑡 > 0,                     

lim
𝑡→+∞

inf 𝐼 𝑡 ≥
𝐶

𝜂
𝑒−𝜂𝜏 ≔ 𝑙1 , 

lim
𝑡→+∞

inf𝑅 𝑡 ≥
𝛾

𝜎
𝑙1 ≔ 𝑙2.     

 

Theorem 14. If 0p   and 𝑅0 > 1, then the endemic 

equilibrium point 𝐸1 is globally asymptotically stable. 

 

Proof: We define the function 

𝑓 𝑥 =
𝑥

1 + 𝜔𝑥
. 

When 0p , from the first and the second equations of (2) at 

𝐸1 , we have 

                             𝐶 = 𝜎𝑆1 + 𝛽𝑆1𝑓 𝐼1                                    32  

and 

                            𝜂𝐼1 = 𝛽𝑆1𝑓 𝐼1 .                                             33  
Let 

                     𝑔 𝑥 = 𝑥 − 1− ln 𝑥 

                    𝑉𝑆1
 𝑡 = 𝑔  

𝑆 𝑡 

𝑆1
  

                    𝑉𝐼1 𝑡 = 𝑔  
𝐼 𝑡 

𝐼1
  

                   𝑉𝐸1
 𝑡 =  𝑔  

𝐼 𝑡−𝑠 

𝐼1
 𝑑𝑠.

𝜏

0
 

We will study the behavior of the Lyapunov functional 

      𝑉𝐸1+
 𝑡 =

1

𝛽𝑓 𝐼1 
𝑉𝑆1

+
𝐼1

𝛽𝑆1𝑓 𝐼1 
𝑉𝐼1 + 𝑉𝐸1

.             34  

We note that 𝑔:𝑅+ → 𝑅+0 has the strict global minimum 

𝑔 1 = 0. Since 𝑉𝑆1
= 𝑉𝐼1 = 𝑉𝐸1

= 0 so that 𝑉𝐸1+
 𝑡 = 0 if 

and only if 𝑆 𝑡 /𝑆1 = 𝐼 𝑡 /𝐼1 = 1 and 𝐼 𝑡 − 𝑠 /𝐼1 = 1 for all 

𝑠 ∈  0, 𝜏 . Hence 𝑉𝐸1+
 𝑡 ≥ 0. 

By Proposition 8 and Proposition11, solutions are bounded 

above and bounded away from zero for large time. Without 

loss of generality, we may assume that, when 0p   the 

solution of system (2) satisfies these bounds for all 𝑡 ≥ 0. 
Thus,  VE1+

 t  is defined for all 𝑡 ≥ 0. 

Let 

v1 =
S

S1

,   v2 =
I

I1

 

and 

𝑣3 =
𝐼𝜏
𝐼1

. 

Additionally, let 

𝐹 𝑣3 =
𝑓 𝐼1𝑣3 

𝑓 𝐼1 
=
𝑓 𝐼𝜏 

𝑓 𝐼1 
. 

Then 
𝑑𝑉𝐸1+

𝑑𝑡
=

1

𝛽𝑓 𝐼1 
𝑑𝑉𝑆1

+
𝐼1

𝛽𝑆1𝑓 𝐼1 
𝑑𝑉𝐼1 + 𝑑𝑉𝐸1

 

                       =
−𝜎

𝛽𝑓 𝐼1 

 𝑆 − 𝑆1 
2

𝑆𝑆1

+ 2 −
1

𝑣1

+ 𝐹 𝑣3 −
𝑣1𝐹 𝑣3 

𝑣2

 

                     −𝑣3 + ln 𝑣3 − ln 𝑣2 . 
 

By adding and subtracting the quantity ln 𝑣1𝐹 𝑣3  , we 

obtain 

𝑑𝑉𝐸1+

𝑑𝑡
=

−𝜎

𝛽𝑓 𝐼1 

 𝑆 − 𝑆1 
2

𝑆𝑆1

− 𝑔  
1

𝑣1

 − 𝑔  
𝑣1𝐹 𝑣3 

𝑣2

 

+ 𝐹 𝑣3 −𝑣3 

                + ln 𝑣3 − ln𝐹 𝑣3 . 
 

Since 𝑓 𝐼1 > 0 and 𝑔:𝑅+ → 𝑅+0 . So that −𝑔 1/𝑣1 ≤ 0 and 

−𝑔 𝑣1𝐹 𝑣3 /𝑣2 ≤ 0. We see that  
𝑑𝑉𝐸1+

𝑑𝑡
≤ 0 if 

𝐹 𝑣3 − 𝑣3 + ln 𝑣3 − ln𝐹 𝑣3 ≤ 𝑄 𝑣3 . 
We consider 

𝐹 𝑣3 − 𝑣3 + ln 𝑣3 − ln𝐹 𝑣3 : = 𝑄 𝑣3  
and find the critical point. We have 

𝑑𝑄 𝑣3 

𝑑𝑣3

= 0 

𝐹  𝑣3  1 −
1

𝐹 𝑣3 
 −  1 −

1

𝑣3

 = 0 

where 
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𝐹 𝑣3 =
𝑣3

1 + 𝜔𝐼1𝑣3

+
𝑣3𝜔𝐼1

1 +𝜔𝐼1𝑣3

, 

𝐹  𝑣3 =
1 + 𝜔𝐼1

 1 +𝜔𝐼1𝑣3 
2

, 

1

𝐹 𝑣3 
=

1 + 𝜔𝐼1𝑣3

𝑣3 1 + 𝜔𝐼1 
. 

 

Substituting 𝐹  𝑣3  and 𝐹 𝑣3 , we have 

 𝑣3 − 1  1 −  1 + 𝜔𝐼1𝑣3 
2 = 0. 

We see 𝑣3 = 1 is the solution of 𝑄 𝑣3  or 

𝜔𝐼1𝑣3 2 + 𝜔𝐼1𝑣3 = 0. 
We see 𝑣3 = 0 or 𝑣3 = −2/𝜔𝐼1 is the solution of 𝑄  𝑣3  but it 

is impossible because we are considering an endemic 

equilibrium point. 

When 0 < 𝑣3 < 1, 𝑄 𝑣3  is positive and when 𝑣3 > 1 

𝑄 𝑣3  is negative, so that  𝑣3 = 1 is the solution of 𝑄 𝑣3 . 
So, 𝐹 𝑣3 − 𝑣3 + ln 𝑣3 − ln𝐹 𝑣3 ≤ 0 with equality only 

if 𝑣3 = 1 together with the fact that 𝑔 ≥ 0 with equality only 

if the argument is 1. By the invariance principle [10], solutions 

limit to 𝑀, the largest invariant subset of  
𝑑𝑉𝐸1+

𝑑𝑡
= 0 . We 

note that 
dVE1+

dt
 is only zero if 𝑣1 = 𝑣2 = 𝑣3 = 1. In particular, 

this requires that, for any solution in 𝑀 , we have 𝑆 𝑡 =
𝑆1 , 𝐼 𝑡 = 𝐼1 and 𝑅 𝑡 = 𝑅1 for all 𝑡 and so 𝑀 consists of the 

single point 𝐸1. Thus, we see that all solutions approach the 

endemic equilibrium 𝐸1 . By Theorem 4, 𝐸1 is locally 

asymptotically stable and by Proposition 8 and Proposition 11, 

when 𝑝 = 0, the system (2) is permanent, allowing us to 

conclude that 𝐸1 is, in fact, globally asymptotically stable.  

By using the similarly techniques, the following theorem 

can be shown. 

 

Theorem 15. If 10  p  and 𝑁2 ∈  0,𝐶/𝜎 , then the 

endemic equilibrium point 𝐸2 is globally asymptotically 

stable. 

 

Theorem 16. If 𝑝 = 1, then the endemic equilibrium point 

𝐸3 is globally asymptotically stable.  

 

Proof: Consider 

                            𝑉𝐸3
 𝑡 = 𝑆 𝑡 .                                                   35  

By Proposition 8 and Proposition 13, solutions are bounded 

above and bounded away from zero for large time. Without 

loss of generality, we may assume that, when 𝑝 = 1, the 

solution of (2) satisfies these bounds for all 𝑡 ≥ 0. Thus, 

𝑉𝐸3
 𝑡  is defined for all 𝑡 ≥ 0. Then we have 

𝑉 𝐸3
 𝑡 = −𝑆  

𝛽𝐼𝜏
1 + 𝜔𝐼𝜏

+ 𝜎 ≤ 0. 

We obtain that 𝑉 𝐸3
 𝑡 = 0 if and only if 𝑆 = 0 or   𝛽𝐼𝜏/ 1 +

𝜔𝐼𝜏  + 𝜎 = 0, but it is impossible in the case that  𝛽𝐼𝜏/ 1 +

𝜔𝐼𝜏  + 𝜎 = 0. So that 𝑉 𝐸3
 𝑡 = 0 if and only if 𝑆 = 0. 

By the invariance principle [10], solutions limit to 𝑀, the 

largest invariant subset of  
𝑑𝑉𝐸3

𝑑𝑡
= 0 . Thus 𝑆 𝑡 = 0 for all 𝑡. 

When 𝑝 = 1, from the second equation of (2) and 𝑆 = 0, we 

further have that 

𝐼  𝑡 = 𝐶 − 𝜂𝐼 𝑡 . 
Thus, 

lim
𝑡→+∞

𝐼 𝑡 =
𝐶

𝜂
. 

From the third equation of (2) and lim𝑡→+∞ 𝐼 𝑡 = 𝐶/𝜂, we 

have 

𝑅 𝑡 =
𝛾𝐶

𝜎𝜂
. 

Hence, the invariance of 𝑀 implies that 𝐼 𝑡 = 𝐶/𝜂 and 

𝑅 𝑡 = 𝛾𝐶/𝜎𝜂 for all 𝑡. So 𝑀 consists of the single point 𝐸3. 

Thus, we see that all solutions approach the endemic 

equilibrium point 𝐸3. By Theorem 6, 𝐸3 is locally 

asymptotically stable and by Proposition 8 and Proposition 13, 

when 1p   the system (2) is permanent, allowing us to 

conclude that 𝐸3 is globally asymptotically stable.      

IV. NUMERICAL SIMULATIONS 

The qualitative behavior of the three population variables, 

namely the susceptibles ( )S t , the infectives ( )I t  and the 

recovered ( )R t , are illustrated by numerical simulations, 

carried out in this section by using a Matlab program. 

In Figure 1, we show a computer simulation of the system 

(2) subject to the initial conditions (0) 4, (0) 3, (0) 3,S I R    

with parameters ,05.0,1.0,2.0,001.0,2,0  Cp  

07.0  and 5 . In this case, we get 0 0.091R   and 0p   

which ensures that the disease-free equilibrium point 0E  is 

globally asymptotically stable. 

In Figure 2, we show a computer simulation of the system 

(2) subject to the initial conditions (0) 4, (0) 3, (0) 3,S I R    

with parameters ,05.0,1.0,2.0,02.0,2,0  Cp  

07.0  and 5 . We have 82.10 R  satisfying the 

conditions in Theorem 4, 0 1R   and 0p  , which ensures 

that 0E  will lose its stability while 1E  become globally 

asymptotically stable. 

In Figure 3, we show a computer simulation of the system 

(2) with different values of 0R  subject to the initial conditions 

(0) 4, (0) 3, (0) 3S I R   . In Figure 3(a), we used 

parameters 0.3, 2, 0.8, 1.5, 0.03, 0.2,p C           

0.1   and 5 . In this case, we get 0 161.616 1R    and 

)74.38,81.5,754.2(2 E . Since 0 1p   and 

2 47.304 ,N C   2 2 2(1 ) 5.527 0I S I   
 

and 

2 2 2(1 ) 1.9088 0.I S I       Therefore, 2E  is globally 

asymptotically stable, as seen in Figure 3(a). 

In Figure 3(b) we used parameters 0.7, 2, 0.02,p C   

1.5, 0.2, 0.4,     0.03   and 5 . In this case, we get 

1371.00 R  and )538.4,269.2,853.2(2 E . Since 10  p  

and 0621.1)1(,66.9 2222  ISICN   and 

2 2 2(1 ) 1.29989 0.I S I       Therefore, 2E  is globally 

asymptotically stable, as seen in Figure 3(b). 

We observe that different values of 0R  ( 0 1R   or 0 1R  ) 

does not effect a stability of 2E  as long as those conditions in 

Theorem 15 are satisfied. 
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In Figure 4, we show a computer simulation of the system 

(2) with different values of 0R  subject to the initial conditions 

(0) 4, (0) 3, (0) 3,S I R    In Figure 4(a), we used 

parameters ,4.0,1.0,2.0,08.0,2,1  Cp 0.3   

and 5 . In this case we get 120 R  and 3 (0,2.5,10).E   

Since 1p  , 3E  is globally asymptotically stable, as seen in 

Figure 4(a). In Figure 4(b) we used parameters ,2,1  Cp

07.0,05.0,4.0,2.0,02.0    and 5 . In this 

case, we get
 

1192.00 R  and 3 (0,3.846,0.481)E  . 

Therefore, 3E  is globally asymptotically stable, as seen in 

Figure 4(b). 

We observe that different values of 0R  ( 0 1R   or 0 1R  ) 

does not effect the stability of 3E  as long as those conditions 

in Theorem 16 are satisfied. 

 
Fig. 1 Numerical simulation of the system (2) subject to the initial 

conditions ,3)0(,3)0(,4)0(  RIS  with parameters 

,05.0,1.0,2.0,001.0,2,0  Cp  07.0  and 

5 . Hence, 1091.00 R . The solution time series tend to 

)0,0,5(0 E , where 5N , as predicted in Theorem 10 in which 

0E  is globally asymptotically stable. 

 
Fig. 2 Numerical simulation of the system (2) subject to the initial 

conditions ,3)0(,3)0(,4)0(  RIS  with parameters 0,p 

2, 0.02, 0.2, 0.1, 0.05,C         07.0 and 5 . Hence, 

182.10 R . The solution time series tend to 

1 (15.5,2.045,1.023)E  , where 568.18N  as predicted in Theorem 

14 in which 1E  is globally asymptotically stable. 

 

 
Fig. 3 Numerical simulation of the system (2) subject to the initial 

conditions ,3)0(,3)0(,4)0(  RIS  (a) 

,2.0,03.0,5.1,8.0,2,3.0  Cp 1.0  and 5 . 

such that 1616.1610 R  and 304.472 N . The solution curves 

tend to )74.38,81.5,754.2(2 E  as predicted in Theorem 15 in which 

2E  is globally asymptotically stable. (b) 

,4.0,2.0,5.1,02.0,2,7.0  Cp 03.0  and 5  

such that 1371.00 R  and 66.92 N  The solution curves tend to 

)538.4,269.2,853.2(2 E  as predicted in Theorem 15 in which 2E  

is globally asymptotically stable. 
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Fig. 4 Numerical simulation of the system (2) subject to the initial 

conditions ,3)0(,3)0(,4)0(  RIS  (a) 1, 2,p C 

0.08, 0.2, 0.1, 0.4,       3.0  and 5  such that 

120 R  and 12.5N  . The solution curves tend to 

)10,5.2,0(3 E  as predicted in Theorem 16 in which 3E  is globally 

asymptotically stable. (b) 1, 2,p C   0.02, 0.2,  

0.4, 0.05, 0.07    
 and 5  such that 1192.00 R  and

4.327N  . The solution curves tend to )481.0,846.3,0(3 E  as 

predicted in Theorem 16 in which 3E  is globally asymptotically 

stable. 

V. CONCLUSION 

We have studied and investigated the behavior of the 

disease-free equilibrium point and all the endemic equilibrium 

points and their local and global stability. We also obtained 

sufficient conditions to ensure that each equilibrium point is 

locally or globally asymptotically stable. 

The existence of 𝐸1 ,𝐸2 or 𝐸3 depends on the values of 𝑝,𝑁 

or 𝑅0 as described. In epidemiology, the basic reproduction 

number of an infection, 𝑅0, is the average number of 

secondary infections generated by one primary infection in a 

susceptible population. In other words, it determines the 

number of people infected by direct or indirect contact with a 

single infected person. 𝑅0 is useful because it helps us to 

determine whether or not an infectious disease can spread 

through a population. 
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